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Nonlocal modulation of the energy cascade in broadband-forced turbulence
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Classically, large-scale forced turbulence is characterized by a transfer of energy from large to small scales
via nonlinear interactions. We have investigated the changes in this energy transfer process in broadband
forced turbulence where an additional perturbation of flow at smaller scales is introduced. The modulation of
the energy dynamics via the introduction of forcing at smaller scales occurs not only in the forced region but
also in a broad range of length scales outside the forced bands due to nonlocal triad interactions. Broadband
forcing changes the energy distribution and energy transfer function in a characteristic manner leading to a
significant modulation of the turbulence. We studied the changes in this transfer of energy when changing the
strength and location of the small-scale forcing support. The energy content in the larger scales was observed
to decrease, while the energy transport power for scales in between the large and small scale forcing regions
was enhanced. This was investigated further in terms of the detailed transfer function between the triad
contributions and observing the long-time statistics of the flow. The energy is transferred toward smaller scales
not only by wave numbers of similar size as in the case of large-scale forced turbulence, but by a much wider

extent of scales that can be externally controlled.
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I. INTRODUCTION

The dynamics of kinetic energy plays a central role in
turbulent flows. The nonlinear term in the Navier-Stokes
equations is responsible for the transfer of energy between
any three wave vectors that form a triad in spectral space [1].
Along with the viscous and forcing terms this controls the
production, transfer, and dissipation of energy in the system.
The triadic interactions have been studied for decaying and
forced turbulence by many authors (for a review, see Ref.
[2]). Throughout the years various types of large-scale forc-
ing methods [3—11] have been proposed to sustain quasista-
tionarity in numerical turbulence as an idealized form of tur-
bulent flow. The aim of such numerical experiments was to
investigate the basic concept of the Kolmogorov (K41)
theory [12] that proposes an inertial range in the kinetic en-
ergy spectrum and local transfer of energy within this range.
The turbulent kinetic energy is on average transferred locally
from larger to neighboring smaller scales.

The purpose of this paper is to numerically investigate the
processes associated with the flow of energy in a turbulent
flow. Specifically, we consider modulated turbulence in
which the modifications involve the supplementary forcing
in a wide range of modes located in an inertial range of the
flow. In the literature, mainly turbulence with forcing re-
stricted to the large scales has been examined in detail [2].
The small scale behavior was found to be energetically quite
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insensitive to the type of forcing and at sufficiently high
Reynolds numbers a well-developed inertial range was ob-
served [13]. Against this background, we extend the use of
forcing methods and investigate their application directly in
the inertial range, thereby focusing particularly on the com-
petition between transfer and forcing. We quantify the domi-
nant alterations due to the broadband forcing in terms of
changes in the energy cascading processes. We pay attention
to the energy transfer function and consider changes that
arise in the contributions from “local,” ‘nonlocal,” and “dis-
tant” triadic interactions. Compared to traditional large-scale
forced turbulence, we observe a strengthening of the contri-
butions of nonlocal interactions, leading to a modification of
the inertial range spectrum.

High-resolution direct numerical simulations of turbu-
lence that measure the influence of individual terms in the
Navier-Stokes equations on the triadic interactions have been
reported [14-20]. It was found that the energetically domi-
nant triadic interactions involve sets of three modes in which
the magnitude of the wave vector of one of the modes differs
considerably from the other two. This suggests that statistics
of smaller scales may be affected by larger scales. These
dominant processes are not in contradiction with the Kol-
mogorov theory because the energy is mainly exchanged be-
tween the two modes of quite similar wave-vector size [19].
Only a small net energy transfer toward larger wave numbers
arises that involves a detailed cancellation between many
individual triad transfers [20]. The spectral space dynamics
is characterized by a multitude of separate transfer processes
among various modes. These contributions can be collected
in pairs with opposite sign and almost the same magnitude.
In total, this leads to a large number of “near cancellations”
and hence only a comparably small net effect remains that
constitutes the well-known “downward cascading” toward
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FIG. 1. Broadband forcing in spectral space. Large-scale forcing
k=k( with an additional high-k forced region k; <k=k,.

higher wave numbers in spectral space. This was confirmed
with the use of helical mode decomposition in Ref. [20].

The dynamics of actual turbulent flows seen in nature is
usually characterized by an enormous number of interacting
scales, often perturbed by geometrically complex boundaries
and influenced by additional forces such as rotation and
buoyancy. This can lead to inhomogeneity and anisotropy,
which are not covered directly in the classical view of the
Kolmogorov energy cascade and may express themselves in
nonlocal interactions of various particular scales of motion.
The complexity of such systems motivated us to study in
more detail forcing methods that simultaneously perturb a
prescribed range of scales [21]. Such “broadband” agitation
of various scales of motion is observed experimentally in
turbulent drag reduction by fiber suspension [22,23], flows
through porous media [24], and over tree canopies [25]. In
these cases the energy is transferred abruptly to small scales
when the flow reaches an obstruction. Various other types of
flows also exhibit turbulent motions that coexist at different
scales [26].

To explore the possibilities of a broader application of
forcing methods in turbulence modeling and concurrently ex-
amine the energy dynamics in flows that do not directly fol-
low the classical Kolmogorov —5/3 scaling we employ nu-
merical simulations of broadband forced turbulence. The
forcing studied in this paper represents a continual addition
or removal of energy from a broad range of scales in the
system, thereby providing the possibility of altering the char-
acteristic —5/3 slope in the kinetic energy spectrum as pre-
dicted by the K41 theory. Specifically, as indicated in Fig. 1,
we apply the forcing to two regions. The large-scale forcing
k=k, classically agitates the largest scales in a flow while
the additional band k; <k=k, is located in a region of the
inertial regime, to allow a direct competition with the non-
linear transfer term. For inertial-range scales broadband forc-
ing introduces explicit energy injection next to the transfer
term. We varied the spectral support and strength of the high-
k band to investigate the modulation of the turbulence that
develops. This distinguishes it from the classical forcing of
large scales only.

In this paper we compute changes in the energy distribu-
tion associated with the broadband forcing and observe a
characteristic alteration in the spectral energy transfer com-
pared to the classical Kolmogorov cascading. This alteration
expresses itself by additional local minima and maxima in
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the transfer function. It is well known that in cases with
large-scale forcing only, negative values are found for the
transfer at the smallest wave numbers indicating the energy
injection at these scales. The positive values for the transfer
that arise for all other wave numbers indicates the energy
cascading process to smaller scales. In our case of broadband
forcing in the inertial range, additional negative regions ap-
pear in the transfer function. These coincide with the addi-
tional local injection of energy. Such a negative region is
bordered by nearby additional maxima in the transfer. These
characterize the associated increased energy transfer to
scales just larger or just smaller than the broadband forced
region.

Forcing applied to different spatial scales simultaneously
allows a nonlocal modulation of the energy distribution com-
pared to the reference Kolmogorov case. To quantify the al-
terations in the energy transfer we use a decomposition of the
velocity field closely following Ref. [16] and investigate the
magnitude of the contributions from various spatial scales to
the overall energy transfer.

The main finding of this study pertains to the role of
broadband inertial range forcing in modifying the natural
energy cascading process. This is understood explicitly in
terms of changes in the detailed nonlocal energy transfer. In
addition, we illustrate and quantify the mechanism of en-
hancement of the total energy transfer to smaller scales aris-
ing from broadband forcing and the depletion of the energy
content in the large scales. Agitation of certain high wave
numbers can affect well separated low wave number compo-
nents in a flow. These findings may be relevant for problems
that involve the control of turbulent flow in complex geom-
etries in which various scales of motions are simultaneously
agitated, e.g., in compact heat exchangers [24]. Further ap-
plications of such broadband forcing may be connected with
the observed modulations of transport properties in physical
space leading to an enhanced scalar dispersion rate [21].

The organization of this paper is as follows. The math-
ematical formulation of the problem is given in Sec. II,
where the computational method and the energy transfer
terms are also described. The energy spectra of broadband
forced turbulence and the modulation of the energy transfer
are investigated in Sec. III. In Sec. IV we present a more
detailed view of the energy transfer processes by computing
partitioned energy transfer function over various spatial
scales. The paper closes with a summary in Sec. V.

II. COMPUTATIONAL FLOW MODEL
A. Equations of motion
The incompressible Navier-Stokes equations in spectral
(Fourier) representation can be written as

(0, + viPu (k,1) =V (k1) + F (K,1), (1)

where u,(k,?) is the velocity field coefficient at wave vector
k (k=|k|) and time 7 [1]. The nondimensional kinematic vis-
cosity v is the inverse of the computational Reynolds number
(Re=1/v). The nonlinear term reads
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Wok1) = Mgy 2 ug(p.0)uy(q.1), )
p+q=k
and the forcing term F,(k,¢) is specified in Sec. II B. The
tensor M .z, in Eq. (2) accounts for the pressure and incom-
pressibility effects:

1
Maﬁy= Z(kBDay'i'kyDaﬁ)’ (3)

in which
D p=8up— kk k. (4)

Taking the inner product of (1) and uZ(k,t), where the aster-
isk denotes the complex conjugate, we obtain the energy
equation

(0,4 2vk*)E(k, 1) = T(k,1) + Tr(K,1). (5)

The spectral energy density is denoted by E(k,?)
=%u2(k,t)ua(k,t). The rate of energy exchanged at wave
vector k with all other modes in the system is characterized
by the energy transfer function

T(k,0) = u,(k, )W (K, 7). (6)
The rate of energy provided by the forcing term is
Tr(k.1) = g (K. F o (k.1), (7)
and the energy dissipation rate present in Eq. (5) reads
e(k,7) = 2vk*E(k,1). (8)

The three terms T(k,7), Tx(k,?) and &(k,?) represent the en-
ergy dynamics in the system that each typically act in distinct
wave-number regions. The forcing term Tx(k,f) is nonzero
in the forced modes only. In this paper the collection of
forced modes will always contain a low wave-number band
corresponding to large-scale forcing of the flow. In addition,
higher wave-number contributions will be included in
Tr(K,1). In contrast, the energy dissipation rate (k,?) is de-
fined in the entire spectral space, but it is dynamically im-
portant primarily for the high wave-number range. Finally,
the transfer term 7(k,¢) is basic to the development of an
energy cascade and is a dominant contribution for wave
numbers in an inertial range [1].

The change of the total energy E in the system is con-
nected with its viscous dissipation and the total effect of the
forcing. In fact, introducing

E() =2, E(K.1), ©)
we find
GE(1) = Tp(r) - 8(1), (10)

where &(r)=2,e(k, ) and fF(t)=2kTF(k, 1). We used the fact

that the total energy transfer 7(r)=3,T(k,)=0. The injec-
tion of energy occurs only in the forced region. This keeps
the whole system in a quasistationary state. Normally, the
forced region is restricted to the largest scales in a flow rep-
resented by the smallest wave numbers [5,10]. The energy
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introduced in the large scales is transferred to smaller scales
and dissipated primarily in very localized flow features of
viscous length scales. By the introduction of an additional
source of energy in the inertial range we will study the per-
turbation of the energy cascading process by the forcing.

B. Forcing method

Forcing is achieved by applying an additional driving
F,(Kk,1) to the velocity field in Fourier space, cf. Eq. (1).
Conventionally, the turbulent cascade develops as a statisti-
cal equilibrium is reached, characterized by the balance be-
tween the input of kinetic energy through the forcing and its
removal through viscous dissipation. In literature [3-11], we
may distinguish several numerical approaches to forced tur-
bulence that all refer to the agitation of the largest scales of
motion. Here, we modify such classical forcing procedures
by allowing for the simultaneous agitation of a broader range
of intermediate-k modes as depicted in Fig. 1.

We study two ranges of forcing: the classical large-scale
forcing (k= k) and small-scale forcing localized in the spec-
tral region where the transfer of energy T(k,?) is important
(ky<k=k,). By narrowing or widening the width of the
forced bands, along with a change in their location in spec-
tral space we can control several aspects of the energy dy-
namics. The strength of forcing is controlled by the amount
of energy introduced to various regions in spectral space.

We expect the small-scale forcing band to influence the
interscale energy transfer process not only between scales of
similar size but at a wider spectrum of scales. This may be
understood globally as follows. The process of energy cas-
cading is mainly interpreted via the resulting local transfer of
energy in spectral space [19]. However, this total energy
transfer results from many nonlocal contributions and these
may be directly altered by the additional small-scale forcing.
Correspondingly an influence on the overall energy cascad-
ing process may occur over an extended wave-number range.
We quantify this effect by evaluating the nonlinear interac-
tions among the various modes while they are being per-
turbed by the broadband forcing.

In this paper we adopt the recently proposed fractal forc-
ing [27], which involves a power-law dependence of F, on
the wave number:

kPe (k1)
B,/ ’
2oy KP2E(K 1)

Fo(k,1)=£,(K) (11

where the coefficient S=D,—2 is connected with the fractal
dimension Dy of the stirrer and &,,(K) is the energy input rate
at mode k. The fractal forcing is based on a simple argument
of drag enhancement associated with flow passing through
complex “porous” regions, e.g., a metal foam or the canopy
of a tree. The complexity of such obstructing objects may be
captured to some extent in terms of their fractal dimension
Dy as elaborated in literature (see, e.g., Refs. [25,27] and
references therein). In Ref. [21] the effect of various deter-
ministic forcing methods was compared and a qualitative
independence of the particular type of forcing was observed,
both in case of large-scale forcing only and when broad band
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forcing was adopted. In this paper we selected the fractal
forcing as a characteristic forcing procedure for further in-
vestigation of the nonlocal alterations in the energy transfer.
The fractal dimension Dy is taken equal to 2.6, close to the
experimental value found for fractal grids reported in Ref.
[28]. Variation of D, by about 20% was considered and
found to yield only small effects on the spectrum.

The set of forced modes K is composed of bands K,, ,
(m=p) which consist of p—m+1 adjacent spherical shells
S,1=2L—Z(n—1/2)<|k| SZL—Z(n+1/2): m=n<p, in terms of
the size of the computational domain denoted by L;. In the
simulations we always force the first shell S; and a single
high-k band K,, ,, if not stated otherwise. The classical large-
scale forcing of the first shell S; has a constant energy injec-
tion rate &,,; in Eq. (11) while K,, , has a constant strength
€,,, and a support in spectral space controlled by m and p:

€1 ifk e Sy,
g, k)=1¢e,, ifkek,,, (12)
0 otherwise.

The vector e in Eq. (11) is given by [27]

u(k,?) . k X u(k,?)
luk,n)|  [k[luk,0|

e(k,7) = (13)
This vector consists of two parts, either parallel or perpen-
dicular to the vector u(k,?). In this forcing procedure, we
have control over the energy input rate, the range of forced
modes, and the effective geometrical complexity of the stir-
rer represented by the fractal dimension.

The summation over all forced modes of uZ(k,t)F (K, 1)
yields a total energy input rate given by

Tp(t) = 2, Trlk) = 2, ug(0F (k) =&,  (14)

where g,,=¢,,;+&,,. The energy input leads to a quasista-
tionary state described by the energy equation

JED) =g, -8@1). (15)

This characterizes the energy dynamics in the system at the
most global level. We observe that this forcing implies a
constant energy injection rate that results in a fluctuating

total energy Eanda fluctuating total energy dissipation rate
with mean g,,.

C. Energy transfer

A detailed investigation of the energy transfer in large-
scale forced turbulence [19] shows that the dominant triadic
interactions occur between wave vectors of quite different
lengths. Hence large-scale forcing may be directly involved
in the dynamics of much smaller scales [29]. The interactions
are roughly classified as “local” when the sizes of all wave
vectors in a triad are similar, “nonlocal” when the scale sepa-
ration is about a factor 10-15 and “distant” when the sepa-
ration is much larger [30]. It was shown that the transfer of
energy reaches maximum values for triads with two wave
vectors of similar size and one with quite different length
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FIG. 2. Schematic triadic interaction that occurs between wave
vector k in shell S; and wave vectors p, q taken from regions I’ and
() of spectral space that each consist of four shells with central wave
numbers k, and k.

[19]. Although, the interactions between triads can be seen
mainly as nonlocal, the dominant net energy transfer is local,
i.e., occurring between similar scales [13,31,32]. The inter-
actions produce forward and backward energy transfer that
combined result in a small net forward energy transfer be-
cause of the detailed balance between contributions that vir-
tually cancel each other [20]. The forward cascade in the
inertial range was found to be dominated by local and non-
local interactions, while the distant interactions do not sig-
nificantly transfer energy [30]. All these findings concern the
classical turbulence forced at the largest scales.

Against this background, we ask what the turbulence re-
sponse will be to a broadband perturbation of the energy
transfer processes? In recent literature a somewhat related
study was reported in Ref. [33]. Decaying turbulence that
starts from an initial condition with an energetically strongly
enhanced small-scale band of modes was studied. The pres-
ence of the extra small-scale band was found to reduce the
intensity of the developing turbulence by enhancing the non-
local energy cascade directly towards smaller scales. This
removes the kinetic energy more efficiently. The energy
feeding mechanisms and energy transfer also attract much
attention in transitional and turbulent flows with an active
control [34]. The modulation induced by the broadband forc-
ing has its consequences, not only in the spectral space dy-
namics of a flow but also in its physical space transport prop-
erties [21].

To analyze the response of turbulence to the additional
broadband perturbation in more detail we apply previously
developed methods used in the examination of energy trans-
fer in large-scale forced turbulence [16]. Referring to Fig. 2,
the energy transfer between a wave vector k=(k;,k,,k;) and
all pairs of wave vectors p and q=k—p with p, q chosen in
some prescribed regions I’ and () will be investigated. Such a
decomposition allows measuring the contribution of separate
scales to the transfer function T(k,z). The precise specifica-
tion requires a few steps that are presented next. First, we
define the truncated velocity field as
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: k.t ifkePork e,
u&“‘”(k,ﬁ:{”‘*( : - U e

0 otherwise.

Based on this truncated velocity field we may compute the
energy transfer involving the wave vector k and all wave
vectors p and (:

Tpp(k,t) lf ]P = ‘Q,

T]P‘Q(k’t) = 1 ~ ~ ~ . :
E[T]P(\}(k,t) - T]P]P(k,t) - TQQ(k’t)] lf ]P 75 LP,
(17)
where
Tpo(k,0) = u (k) WV (k,0). (18)

The nonlinear term \I,Eli“,t) )(k,t) is defined by the convolution
of the truncated fields:

Ve k) = Mgy 2wy o0y @), (19)
p+q=k

where the sum is over all triads with p € P and q € ) such
that p+q=k.

For a statistically isotropic, homogeneous turbulence it is
convenient to average over spherical shells in wave-vector
space. In addition, in view of the considerable computational
effort involved in computing all interactions between the
very large number of scales present in the flow, we intro-
duced a slight coarse graining in terms of the regions P and
() as shown in Fig. 2. Specifically, it was found adequate to
group together contributions from four adjacent shells. Other
more coarse “groupings” of wave numbers have been con-
sidered in the literature with the aim of extracting the domi-
nant interaction processes at a reasonable computational ef-
fort. As an example a “logarithmic” grouping was adopted in
Ref. [16] combining contributions from bands with a width
of 2%, In this paper we will look at the interactions of four
shells I’ at distance k, (cf. Fig. 2) with four shells () at
distance k, that contribute to the nonlinear energy transfer to
shell S; characterized by the wave number k.

In terms of the transfer function Tp((k,?) we may now
define the required spectral transfer functions. The energy
transfer term (17) gives the exchange of energy by the triad
(k,p,q) where the latter two wave vectors are specified by
the sets P and () and the triangle constraint. Summing over
all modes k in shell S, we obtain the exact exchange of
energy in the kth shell between £, kp, and kq:

Ty(kkykyt) = 2, 5, Tro(k.). (20)

We refer to T, as the “three-mode” transfer. The total energy

transfer function 7(k,7) can be computed directly from Egq.
(6) or as sum of the contributions from Eq. (20):

T(k,1) = Ek,, T,(k,kpst), (21)

in which the “two-mode” transfer 7, is given by
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T, (k k1) = Ekq Ty (kokp ko). (22)

The individual transfer terms T(k,1), Tp(k,kp,t), and
T,,(k,k,,k,,t) give, respectively, more detailed characteris-
tics of the energy transfer. The total transfer T(k,?) expresses
the amount of energy transferred from (negative) or to (posi-
tive) shell Sy. All three transfer terms 7, T, and T,, will be

used to investigate the transfer of energy in the sequel.

D. Simulation details

The numerical integration of the Navier-Stokes equations
(1) is done via a four-stage, second-order, compact-storage,
Runge-Kutta method [35]. To fully remove the aliasing error
we applied a method that employs two shifted grids and
spherical truncation [36]. We consider the canonical problem
of forced turbulence in a cubic box of side L, with periodic
boundary conditions. Direct numerical simulations are char-
acterized by N° computational points, where N is the number
of grid points used in each direction. A detailed description
of the simulation setup and the validation of the numerical
procedure can be found in Ref. [21]. The components of the
wave vector k are k,=Qwu/L,)n, where n,
=0,+1,%2,...,+(N/2-1),-N/2for «a=1,2,3. The nu-
merical simulations are defined further by the size of the
domain (L,=1), the computational Reynolds number Re, and
the energy injection rates to the two distinct bands
(8w,1 s 8W,2)’

We will study this homogeneous turbulent flow at two
different computational Reynolds numbers, i.e., Re=1061
and Re=4243. In case of homogeneous, decaying turbulence
these Reynolds numbers correspond to R,=50 or 100, in
terms of the initial Taylor-Reynolds number [21]. The large-
scale forcing of 5, has an energy injection rate g,,;=0.15
that is used as a reference case. For all simulations the fractal
dimension was kept constant and equal to D;=2.6 [27].

The smallest length scale that should be accurately re-
solved depends on the size of the box, viscous dissipation,
and energy injection rate. Usually it is required that k.7
>1[5,37,38] in terms of the Kolmogorov length scale 7% and
the maximal magnitude of the wave vector k,,=7N/L, that
enters the computations. In our simulations k., 7<2 indi-
cating that the small scales are well resolved.

We consider time-averaged properties of the turbulent
flow. For a function & these are defined by

: T
<h>t=lim% h(7ndr= J h(ndr, (23)

where 7 is sufficiently large. We start the averaging at fy=5
which corresponds to about 10 eddy-turnover times for the
simulated cases. The final time was taken equal to 7=30, so
all results are averaged over approximately 50 eddy-turnover
times. The accuracy of this approximation to the long-time
average, measured as the ratio of the standard deviation and
the mean signal, is less than 5% for all investigated quanti-
ties.

The energy spectra presented in this paper are shell and
time averaged. Moreover, we focus on compensated spectra
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FIG. 3. Time-averaged total kinetic energy E (solid), total en-
ergy dissipation rate &€ (dotted), and Taylor-Reynolds number Ry
(dashed) for forced turbulence with different locations of the second
band at Re=1061.

E,. in which we use nondimensional Kolmogorov units:
E(,(k)=<é>t_2/ Sk3(E (k,1)), in terms of the shell-averaged
spectrum E(k,7)=Zy s E(k,7). The compensation of the
spectrum is not strictly required to observe the characteristic
changes in the energy distribution, but as it gives more in-
formation about the dominant scales present in a flow, it will
be used throughout.

III. BROADBAND FORCED TURBULENCE

A. Energy distribution in forced turbulence

We first concentrate on the application of the high-k forc-
ing band at different locations in spectral space. We apply a
constant energy input rate &,,,=0.15 to this band. Simulta-
neously, the large-scale forcing to the first shell 5, is &,
=0.15. The computational Reynolds number is Re=1061. We
forced the bands KN,% for p=5,9, 17, 25. The parameters of
these simulations with some of the statistics are further pre-
sented in the Appendix (runs 1 and 14-17 in Tables I and II
are concerned here).

The total kinetic energy, energy dissipation rate, and
Taylor-Reynolds number are shown in Fig. 3 as a function of
the location of the left boundary p of the high-k forced band
KK, p+3- The first data point refers to the classical large-scale
forcing only (run 1). Application of broadband forcing in the
different bands changes the characteristics of the flow modi-
fying primarily the amount of small scales. This forcing in
the second band is seen to increase the energy dissipation in
the system. The Kolmogorov dissipation scale and the
Taylor-Reynolds number decrease, suggesting that the char-
acteristic scale at which dissipation plays an important role is
shifted to smaller scales. We notice that the total energy in
the system is only slightly affected by the introduction of
forcing. Moving the broadband forcing to very small scales
implies that there is no longer a strong influence on the flow
because the energy injected in the small scales appears to be
also dissipated immediately.
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FIG. 4. Compensated shell- and time-averaged energy spectrum
E(k) for two-band forcing: S; and K, ,,5. Large-scale forcing S,
(solid), additional forcing in the second band Ks g (dashed), Kq ,
(dash-dotted), K759 (>), Kysog (O) at Re=1061.

The compensated, shell-, and time-averaged energy spec-
trum for different locations of the forced region K, , 5 are
shown in Fig. 4. We may observe that the forcing causes a
nonlocal depletion in the energy spectrum for the larger
scales, while the tail of the spectrum is less affected. The
pileup in the energy spectrum near the forcing region is char-
acteristic of the explicit high-k forcing and is suggestive of a
“blocking” or reverse cascading. If the separation between S,
and the high-k band is reduced, then the interaction is stron-
ger and a considerable depletion of the energy levels in the
largest scales arises. This is in agreement with the large-scale
forced turbulence results, where the local and nonlocal inter-
actions were found to be energetically dominant, while the
distant interactions were mainly responsible for transferring
structural information [30].

An effective modulation of turbulent quantities is possible
not only by a change in the range of forced modes but also
via a change in the energy input rate. To investigate this we
adopted an energy injection rate &,,,=0.15 for the large-scale
forcing in S; and we vary the intensity of forcing in the
second band by changing ¢,,,. We adopted the following
values for g,,,: 0.07, 0.15, 0.30, 0.45, 0.60, 0.75, or 0.90 and
considered forcing of four or eight shells in K75, or K74,
respectively. The parameters and characteristic quantities can
be found in Tables I and II as runs 27 and 8-13.

The total energy in the system is only slightly affected by
the forcing strength in the second band as shown in Fig. 5.
An increased forcing strength introduces additional energy
into the flow at small scales that is dissipated very efficiently.
This is expressed by the linear increase in (£),. In Fig. 6 we
present the compensated energy spectrum for various
strengths of the forcing ¢,, ,. The energy in the forced region
reaches higher values with increasing g,,,. Changing the
strength of the broadband forcing induces a characteristic
depletion in the larger scales. This suggests that the addi-
tional forcing term enhances the nonlinear interactions,
which influence various scales quite far away from the
forced region. The energy that is injected at the larger scales
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FIG. 5. Time-averaged total energy E (solid), total energy dis-
sipation rate € (dotted), and Taylor-Reynolds number R, (dashed)

for two-band forced turbulence with varying strength in the second
band €,,, at Re=1061.

is transferred even more effectively through the cascade as
e, increases. This effect appears similar to the so-called
spectral shortcut observed in nature and experiments [25]. In
the case of such a shortcut the energy from larger scales is
diverted quite directly to fine scales, largely bypassing the
traditional cascading. This mechanism was explained in the
case of flow over forest canopies in Ref. [25]. We will inves-
tigate it in more detail in the next section.

A final quantification of the nonlocal effect on the spec-
trum that arises from the high-k forcing is collected in Fig. 7.
Here we displayed the normalized accumulated energy

Ee(k)

10

107
kn

FIG. 6. Compensated shell- and time-averaged energy spectrum
E_ (k) for forced turbulence in the band K7 5 at different strengths
of forcing €,,, and Re=1061. Large-scale forcing only (solid), ad-
ditional second band forcing with g, ,=0.07, 0.15, 0.30, 0.45, 0.60,
0.75, 0.90 denoted as [, dotted, dashed, dash-dotted, >, &, O,
respectively. In each case g,,;=0.15.
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FIG. 7. Normalized accumulated energy Sg(k) for two-band S;
and K;;,4 forced turbulence at Re=1061. Large-scale forcing at
€,,1=0.15 (solid) with additional second band forcing at e,
=0.15, 0.30, 0.45, 0.60, 0.75, 0.90 is denoted by the dotted, dashed,
dash-dotted, >, ¢, and O curves, respectively.

2Bk
Spk)=——— (24)

2, Ek)

in the consecutive shells. As pointed out, varying the prop-
erties of a flow in a specified spectral region can change the
behavior of a flow well outside this region. In terms of Sg(k)
we notice that close to 90% of the energy is present in the
first ten shells (Fig. 7) when only the large-scale forcing is
applied. Influencing the flow at smaller scales in K74 is
seen to remove most of the energy from these larger scales
while there is only a slight impact on the dynamics of small
scales. This effect becomes more pronounced with increasing
€,,2- The underlying changes in the energy transfer will be
considered in more detail in Sec. IV.

B. Energy transfer spectra

The transfer of energy in turbulence can be described in
spectral space as interactions of triads of wave vectors
(k,p,q) that form triangles, i.e., k=p+q. Direct numerical
simulation with large-scale forcing shows that nonlocal in-
teractions between wave vectors combine into a local energy
flow [13,31]. By applying forcing that is located in a high-k
range of spectral space we perturb the “natural” cascading
process. The associated changes in the transfer of energy will
be investigated in more detail in this subsection. Specifically,
we focus on the energy transfer and energy transport power
spectra.

In large-scale forced turbulence energy is injected into the
first shell and removed by the transfer term. This gives rise to
negative values, for the energy transfer in the forced region.
In the higher shells the transfer function takes on positive
values which illustrates the transfer of energy through the
cascade toward higher k. By invoking the broadband forcing
we influence this basic energy cascade. This is clearly seen in
the energy transfer spectrum which develops distinctive re-
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FIG. 8. Time-averaged energy transfer T(k) for two-band S; and
K720 forced turbulence for different strengths of forcing in the
second band €,,, at Re=1061. Large-scale forcing (solid) with ad-
ditional second band forcing at &,,,=0.07, 0.15, 0.30, 0.45, 0.60,
0.75, 0.90 denoted by [, dotted, dashed, dash-dotted, >, ¢, and O
curves, respectively.

gions where T(k)=(T(k,r)), is negative. Figure 8 character-
izes changes in the transfer function due to an increased forc-
ing strength of the high-k band. The transfer function reaches
lower values between the low- and high-k forcing regions
compared to the large-scale forced case. The reverse situa-
tion appears near the high-k forced band where the transfer
increases with an increase of the forcing intensity. This is in
agreement with the energy spectra presented earlier, where
we observed the depletion of energy between the forced re-
gions. This effect can be observed more directly from spectra
of energy transport power that will be presented next.

The energy transport power gives the rate at which energy
is transferred from shells k" <k to those with k' > k:

kmax k
T(k,7) = f T(k' ,)dk' = - J (k' ,ndk',  (25)
k 0

where k,,,=7N/L, is the cutoff wave number. We present
the time-averaged transport power spectrum II(k)
=(Il(k,7)), in Fig. 9 for forcing with various strengths in the
K7.24 band. In case of large-scale forcing only, the transport
power is positive for all k as the energy is transferred toward
smaller scales and reaches zero for large k indicating the

general property of the total transfer function f”(t):O. The
application of high-k forcing for ky<k=k, changes this
well-known picture. First, we note that the values of the
transport power are all similar in the largest scales, where the
flow is governed by the same energy input. The transport
power for 0 <k=k; becomes larger at higher &, ,. A striking
change of the behavior arises for k£ near and inside the high-
k forced region. The transport power spectrum even assumes
negative values for k=k;.

The observed behavior of the transport power in Fig. 9 is
partly due to the relatively low Reynolds number that was
used. At sufficiently high Reynolds numbers, the dissipation
scales are much more separated from the high-k forced
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FIG. 9. Time-averaged transport power spectra for broadband
forced turbulence in the K554 band at Re=1061. Large-scale forc-
ing (solid) with additional second band forced at ¢,,,=0.15, 0.30,
0.45, 0.60, 0.75, 0.90 denoted as dotted, dashed, dash-dotted, >, <,
O, curves, respectively. The supplementary forced region k; <k
=k, is denoted with dotted lines.

scales. In this case a plateau of IT will arise at low wave
numbers: [1(k,r)=¢,, | for k low enough [1]. This property is
not observed at the computational Reynolds number consid-
ered so far.

In cases specified by runs 18 and 19 we consider the flow
at a four times higher computational Reynolds number. The
overall results for the energy spectra and energy transfer
were found to be qualitatively the same as in the lower Rey-
nolds number cases. However, a plateau may now be ob-
served in Fig. 10, where we present the transport power for
the higher Reynolds number. In this case the transport power
does not decrease below zero in the forced region. The sec-
ond forcing band is well separated from the dissipation re-

0.25

0.2r

0.15

= 041

0.05¢

-0.05 —
10 10 10
k/(2m)

FIG. 10. Time-averaged transport power spectra for Reynolds
number Re=4243 and forcing in the K7 5, band. Large-scale forc-
ing (solid), additional broadband forcing in the K7,y band with
€,,2,=0.30 (dashed).
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gion and the transport power in this band is much larger,
approaching a maximum 0.23 that is near the energy injec-
tion rate g, ,.

In this section we have looked at the effect of high-k
modulation of the energy cascading process that leads to an
increased energy dissipation in small scales. This process is
supported by an increased energy transfer to smaller scales
via nonlocal triad interactions. The effect of increased energy
rate by the application of broadband forcing is seen in the
energy transfer and transport power spectra. In the next sec-
tion we will look more closely at the interactions of various
scales of motion under the influence of broadband forcing by
considering the two- and three-mode transfers 7, and T,
introduced in Egs. (22) and (20).

IV. TWO- AND THREE-MODE INTERACTION OF
SCALES

The energy dynamics of turbulent flow is generally dis-
cussed in terms of the transfer of kinetic energy from larger
to smaller scales through nonlinear interactions. The statisti-
cal properties of turbulence are determined by these interac-
tions. In the previous section we have shown how additional
broadband forcing of inertial range scales can modify the
classical picture of the Kolmogorov cascade. To investigate
the observed turbulence modulation effects in more detail we
consider the underlying two- and three-mode energy transfer
terms in this section. This will clarify to some extent the
changes in the various nonlinear interactions that give rise to
the observed alterations in the spectra and energy transfer.

We start with the three-mode transfer that is averaged in
time T,,(k,k,,k,)=(T,,(k,k,,k,.1)), and split this term into
its posmve and negative parts:

Tpykokpiky) = T (ko)) + T (kK pk ), (26)

in which

pq(k kq)
(k’ p? ) { O

with a similar definition for the negative part:
k,) <0

T, (kk,k if T,,(k.k,, ,
(k’ P> ) = {Opq( 14 L]) 1 ( P (28)

otherwise.
In terms of these contributions we examine the normalized
triad energy transfer

if T, (k.k,nk,) =0,
glk:kp.ky) 27)

otherwise,

T, (k.ky.k,) T, (kk,k,)
Kok ke, § LIS (29
Tlklpk) == 0 * Tty @)
where
Tmm(k) == min(T;q(k’kpskq))s
Pq
Tmax(k) maX( pq(k9 [)5 ) (30)
kl’kq

Through the scaling of 7),, and T;q with T, and T}, e
spectively, the normalized transfer is well suited to charac-

PHYSICAL REVIEW E 74, 016306 (2006)

terize the overall structure of the three-mode transfer func-
tion, even in cases in which the order of magnitude of 7,
varies considerably. The normalized energy transfer

T,,(k,k,.k,) is plotted in Fig. 11 for three different wave
numbers k/(2m)=14, 42, 82, based on run 19 in which R,
=75. The three k values that are selected correspond to wave
numbers below the forced region [k/(27)=14] or to wave
numbers that are considerably larger. Such contour maps for

qu can also be found in Ref. [19] for the case of large-scale
forced turbulence. For completeness, we also presented the
results from such large-scale forced turbulence (run 18) com-
paring these directly to the broadband forced turbulence (run
19). This contour map is shown in Fig. 12 for k/(2)=46.

The strongest interactions are observed for modes with
wave numbers between the largest forced scales and the
high-k forced region as can be seen in Fig. 11(a). As in the
case of large-scale forcing only we observe very strong in-
teractions between Fourier modes of considerably different
scales. These are located in the corners of the rectangular
domains in the k,-k, plane. Distant interactions are well
separated from the origin in these figures. Their contribution
to the transfer is seen to be very small, as also noticed earlier
in the literature [19]. The change of sign in the transfer func-
tion that occurs at k,=k and k,=k, respectively, on the k,-k,
planes indicates that in this region the energy is mainly trans-
ferred to higher k.

The most efficient transfer takes place between two wave
vectors of similar size and one of quite different size as seen
in the corners of the rectangular area in Fig. 11. This is in
agreement with previous numerical experiments reported by
various authors [2,16,19]. However, compared to the case of
large-scale forcing only, we now observe quite extended,
highly energetic interactions with the high-k forced region.
The second forced band causes regions with high intensity of
interactions to be much wider compared to the case of large-
scale forcing only. This is visible directly in Fig. 12. The
regions with positive and negative transfer are extended from
the corners to the wave-number regions where the actual
application of forcing in the second band occurs. The energy
is exchanged predominantly between scales that are more
separated than in case of the large-scale forced flow where
the dominant interactions occur only in the corners. This is a
clear indication of the stronger nonlocal interactions, men-
tioned earlier.

For further clarification of energy transfer processes we
turn to the time-averaged two-mode energy transfer
T,(k,k,)=(T,(k,k,)), which gives information about the in-
teractions involving a sum over all k, wave numbers at fixed
k and k,. The sum involves all k, wave numbers that are
constrained by the triadic interactions, i.e., their length may
vary between |k—p| and |k+p|. We normalized the two-

mode transfer function T,,(k, ,,) in a similar manner as

T (k? p’ ):
_ T, (k.k,) T,(kk
T,(k,k,) = 2t ) o) (31)
Tmin(k) max(k)
where T;, Tin» and Ty, are defined in terms of 7, in a

manner analogous to the definitions in Egs. (26)—(28) and
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FIG. 11. (Color online) The normalized triad energy transfer
function qu(k,kp,kq) for k/(2m)=14, 42, 82 in (a)—(c), respec-
tively. The dashed lines correspond to the lower (k;) and upper (k,)
wave numbers used in the broadband forcing at Re=4243. The
contour levels are +1/2", n=0, ..., 18 that are the same for all three
pictures.

(30). In Fig. 13 we plotted the contour map of Tp(k,k ). For
larger wave numbers this quantity was found to look quite
similar to the case of large-scale forced turbulence. The two-
mode transfer function changes sign from negative to posi-
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FIG. 12. (Color online) The normalized triad energy transfer
function Tl,q(k,kp,kq) for k/(27)=46 at Re=4243. The upper (bot-
tom) rectangle presents broadband (large-scale) forced turbulence,
respectively. The contour levels are +1/2", n=0,...,24.

tive at k=k, indicating a downward energy flow. Comparing
this to the large-scale forced turbulence we observe (i) strong
influence of forcing in the regions where it is applied (de-
noted with dashed lines), (ii) extended negative energy trans-
fer region with comparatively high magnitude above the k
=k, line, (iii) amplification of the backward energy transfer
indicated by the positive region for small k and large k,,. This
region is separated from the intense negative energy transfer
region by the indicated accumulation of contour lines above
the k=k, line appearing as the curved black line.

A more quantitative overview is plotted in Fig. 14 dis-
playing the two-mode transfer function in the range
k,/(2m)=30,34,...,94. This clearly shows the cascading
character of the energy flow from larger to smaller scales in
the system. The modification due to the high-k forcing ex-
presses itself by the sequence of one slightly positive, two

110
100
90
80
70
60
50
40
30/ 4
20—

kp/(27)

FIG. 13. (Color online) The normalized triad energy transfer
function Tp(k,k) at Re=4243 (run 19). The contour levels are
+1/2", n=0,...,18. The supplementary forced region k; <k=k,
denoted with dashed lines.
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FIG. 14. The triad energy transfer function 7)(k.k,) at
k,/(277)=30,34,...,94 and Re=4243 (run 19).

quite negative and one quite positive local extrema. The in-
tensity of the energy transfer decreases with increasing wave
numbers as less energy needs to be transferred. This corre-
sponds directly to the magnitude of T,;,(k) and T,,(k) used
in the normalization of T),(k,k,) [Eq. (31)]. The part in which
the transfer is negative is much wider in the broadband
forced case compared to the large-scale forced turbulence
results.

We conclude by considering the effect of varying the forc-
ing strength &, , at a characteristic wave number k,/(2)
=30 on the two-mode energy transfer function 7,(k,k,). This
is shown in Fig. 15. In the large-scale forced case at g,,,
=0 the transfer is very small compared to the cases in which
the high-k forcing is active. In addition, the effect is very
localized (solid line in Fig. 15). The forcing in the high-k
band completely changes this behavior. The intensity of the
energy transfer is directly related to the value of &, ,. Addi-
tional extrema appear in the two-mode transfer function. The
high-k forced cases display two pairs in which a negative
minimum is combined with a positive maximum, while large
scale forcing only yields one such combination. Correspond-
ingly, the min-max pair at high k is associated with the large
scale forcing in S; while the min-max pair at lower k origi-
nates from the additional forcing in the second band. We also
investigated three-band forcing and observed further peaks in
the energy transfer spectra.

V. CONCLUDING REMARKS

We performed direct numerical simulations of broadband
forced turbulence to explore accumulated effects on the time-
averaged energy transfer in isotropic homogeneous turbu-
lence. Using broadband forcing based on a recently proposed
mathematical model for a fractal stirrer [27] we have shown
how the application of such forcing modulates turbulence
both qualitatively and quantitatively. The modulation is simi-
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FIG. 15. The triad energy transfer function 7,(k,k,) at
k,/(2m)=30 and Re=1061. Large-scale forcing (solid) with addi-
tional second band forced at ,,,=0.07, 0.15, 0.30, 0.45, 0.60, 0.75,
0.90 denoted as [J, dotted, dashed, dash-dotted, >, ¢, O,
respectively.

lar to that observed in experiments based on flows through
porous media or canopies. Specifically the perturbation of a
flow arising from the contact with complex physical bound-
aries enhances the dissipation and causes an abrupt energy
drain from large to small scales. This aspect of simultaneous
perturbation of a flow on a spectrum of length scales is re-
tained in the cases studied here.

We found that broadband forcing that perturbs a turbulent
flow at smaller scales enhances nonlocal triad interactions
and alters the detailed cancellation processes that occur in
the traditional large-scale forced flows. This leads to nonlo-
cal modifications in the energy transfer spectrum and the
energy distribution among scales. We verified this by parti-
tioning the nonlinear term in the Navier-Stokes equations in
terms of different triad contributions to the total transfer
function. The energy transport power is found to be en-
hanced in the spectral region in between the large-scale and
the high-k forced bands. This characteristic may be influ-
enced via the control parameters of the applied forcing, i.e.,
its strength and extent of agitated scales, and allows optimiz-
ing transport processes of turbulent flows.

Future study will involve the examination of the conse-
quences of forcing in the physical space context. We will
investigate the geometrical statistics of broadband forced tur-
bulence looking at the interactions of strain and vorticity and
their modulation by the applied forcing. This may help un-
derstanding which physical processes are responsible for the
observed modulations and how to exploit this to enhance
physical space mixing.
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TABLE I. Direct numerical simulation parameters using a reso-
lution of N=128 and Re=1061 in runs 1-17, and a resolution of
N=256 at Re=4243 in runs 18 and 19. The cases with large-scale
forcing only are denoted by *. In this table ¢,, denotes the energy
input rate in the high-k band, except runs 1 and 18 in which it
corresponds to the energy input rate in S;. Moreover, m and p
characterize the spectral support of the high-k band KK

m,p*
Run £, m P Run &, m )4
1 0.15*
2 0.07 17 20 8 0.15 17 24
3 0.30 17 20 0.30 17 24
4 0.45 17 20 10 0.45 17 24
5 0.60 17 20 11 0.60 17 24
6 0.75 17 20 12 0.75 17 24
7 0.90 17 20 13 0.90 17 24
14 0.15 5 8 18 0.15*
15 0.15 9 12 19 0.30 17 20
16 0.15 17 20
17 0.15 25 28

tion for Fundamental Research of Matter (FOM). The au-
thors wish to thank NCF (Dutch Foundation for National
Computing Facilities) for supporting the computations.
These were executed at SARA Computing and Networking
Services in Amsterdam.
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APPENDIX

The main parameters of the simulations are collected in
Table I. The corresponding statistics of the velocity fields are
summarized in Table II. The quantities compiled in Table II
are the Kolmogorov dissipation wave number k,, which is
the inverse of the Kolmogorov length scale 7, the product

ky.m. the Taylor microscale N=[5E/S,k*E(k,1)]"2, the
Taylor-microscale Reynolds number Ry =Au'/v, the integral
length scale L:377/(4l:?)2kk“E(k,t), the integral Reynolds

number R;=Lu'/v, the rms velocity u’=(2E/3)"2, the en-
ergy dissipation rate e=3,2vk’E(k,?), the eddy-turnover
time 7=L/u’, and the skewness S=2/35(\/u’')*=, k>T(k ,1).
All these quantities in Table II are time averaged (-), as de-
scribed in Sec. II D.

We also checked that the alteration of the cascading pro-
cess caused by the high-k forcing does not influence the isot-
ropy of the flow field. A measure of isotropy was suggested
in Ref. [39] given by I*(1)=y,(t)/yn(t) where (1)
=(le,(K)u(k,?)|*), (k,t)={e,(K)u(k,?)*) are the kinetic
energy along the components of two orthogonal solenoidal
unit vectors e,(k)=k X z(k)/|k X z(k)|, e,(k)=k X e,(k)/|k
X e,(k)| where z(k) is a randomly oriented unit vector. The
operator (-) denotes averaging over these random unit vec-
tors. For isotropic turbulence one can expect to find /=1, i.e.,
=1, which was confirmed to close approximation in all
simulations. Deviations from the expected value for / were
found to be of the order of 1%.

TABLE II. Direct numerical simulations statistics of the different cases studied.

Run ky knax M A Ry L Ry u' e T S

1 116 3.26 0.123 52 0.23 97 0.40 0.15 0.57 0.49
2 130 291 0.100 43 0.23 100 0.41 0.24 0.56 0.35
3 156 2.42 0.069 30 0.23 98 0.41 0.50 0.54 0.21
4 168 2.25 0.061 27 0.23 101 0.42 0.66 0.54 0.17
5 178 2.12 0.056 25 0.22 102 0.43 0.83 0.52 0.15
6 186 2.03 0.051 23 0.22 102 0.43 1.00 0.52 0.14
7 193 1.95 0.048 22 0.22 100 0.43 1.16 0.50 0.13
8 140 2.68 0.085 37 0.23 99 0.41 0.33 0.56 0.29
9 156 2.41 0.070 31 0.23 102 0.41 0.50 0.56 0.22
10 169 2.24 0.060 26 0.22 98 0.41 0.68 0.54 0.18
11 178 2.11 0.054 24 0.22 100 0.42 0.85 0.53 0.16
12 187 2.02 0.049 22 0.22 97 0.42 1.03 0.52 0.15
13 194 1.94 0.046 21 0.21 96 0.42 1.20 0.50 0.13
14 138 2.73 0.090 39 0.22 96 0.41 0.30 0.52 0.44
15 138 2.72 0.089 39 0.23 102 0.42 0.31 0.56 0.39
16 140 2.69 0.084 36 0.22 96 0.40 0.33 0.55 0.28
17 143 2.64 0.082 36 0.23 98 0.41 0.35 0.56 0.22
18 325 2.32 0.065 115 0.21 368 0.42 0.15 0.50 0.51
19 432 1.74 0.040 75 0.21 394 0.44 0.46 0.47 0.38
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